
Low-Light Image Enhancement
MAT 494: Computational Methods for Image Processing

Achintya Jha Logan Van Pelt Noah Pack

May 8, 2025

Abstract

Brightening a low-light photograph without amplified noise is a delicate balancing act. We
explore the problem from three complementary angles. First, we design an entirely analytic,
three-stage pipeline—variance-adaptive CLAHE for local contrast, brightness-aware gamma cor-
rection for global tone, and noise-level-controlled non-local means for denoising—whose hyper-
parameters are computed directly from first-order image statistics. Second, we introduce an
ultralight percentile-guided power-law remapping that can be implemented even in resource-
constrained settings. Third, we perform a principled “failure analysis” of a gamma-based for-
ward process for diffusion models, showing why its deterministic nature breaks the probabilistic
assumptions of score-based generative modeling. Experiments on the publicly available LOw-
Light (LOL) dataset demonstrate that our classical pipeline produces visibly cleaner, brighter
images in real time on a laptop CPU, while the percentile variant offers a pragmatic fallback
and the diffusion study charts a roadmap for future learning-based work.

1 Introduction

Low-light photography poses two coupled challenges: insufficient photons yield dark images, and the
high sensor gain needed to compensate injects signal-dependent electronic noise. These artifacts
impede consumer snapshots, surveillance feeds, autonomous navigation pipelines, and scientific
measurements alike. Although recent deep networks can restore such images, they often require
heavy compute, large labelled datasets, and offer little interpretability.

Motivated by scenarios in which transparency, reproducibility, or real-time execution trump
sheer benchmark scores, we revisit classical enhancement strategies and ask:

Can a fully analytic pipeline rival more complex approaches while remaining lightweight
and easy to reason about—and what lessons does that teach us when bridging to modern
generative models?

We answer through three contributions:

1. Variance-adaptive pipeline. A cascade of CLAHE, gamma correction, and non-local
means, each governed by simple functions of the input’s mean and variance (Section 3).

2. Ultralight percentile remapping. A two-parameter power-law adjustment driven by a
user-chosen percentile and target brightness, yielding a one-function baseline for embedded
or mobile devices (Section 4).

3. Diffusion-model insight. A controlled experiment replacing Gaussian noise with a deter-
ministic gamma schedule reveals why stochasticity is indispensable for score-based diffusion,
guiding future hybrid designs (Section 5).

1

2 Dataset & Acquisition

Experiments use the publicly available LOw-Light (LOL) dataset [1]. LOL contains 500 perfectly
aligned image pairs: each scene has a short-exposure, high-ISO low-light image and a long-exposure,
low-ISO normal-light reference. Images are 400� 600 pixels and mostly depict indoor scenes. We
follow the official split of 485 pairs for training and 15 for testing, enabling direct comparison with
prior work.

3 Adaptive Techniques

3.1 Notation

Let the RGB input be I 2 [0; 255]H�W�3. Its grayscale mean and standard deviation are �I =
mean(gray(I)); �I = std(gray(I)):

3.2 Adaptive CLAHE

The luminance channel Y (from an RGB!YUV conversion) is equalized by contrast-limited adap-
tive histogram equalization (CLAHE). The clip limit is set adaptively:

CL = clip
�
�
�I
64
; 1:0; 4:0

�
; � = 2:0; (1)

where clip(x; a; b) = min(max(x; a); b) confines the value to [a; b]. Tiles of 8�8 pixels are processed
independently and bilinearly blended.

def adaptive_clahe(img, clip_limit_factor=2.0, tile_grid_size=(8, 8)):

img_yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV)

contrast = calculate_contrast(img)

clip_limit = max(1.0, min(4.0, clip_limit_factor * (contrast / 64.0))) # Adjust clip limit dynamically

clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=tile_grid_size)

img_yuv[:, :, 0] = clahe.apply(img_yuv[:, :, 0])

return cv2.cvtColor(img_yuv, cv2.COLOR_YUV2BGR)

3.3 Adaptive Gamma Correction

Global brightness is corrected with a power-law transform:

 = clip
�
1 + 128��I

128 ; 0:5; 2:5
�
; (2)

Iout(p) = 255

�
Iin(p)

255

�1=

; p 2 Ω: (3)

def adaptive_gamma_correction(img):

brightness = calculate_brightness(img)

gamma = 1.0 + (128 - brightness) / 128.0 # Adjust gamma based on brightness

gamma = max(0.5, min(2.5, gamma)) # Limit gamma to a reasonable range

inv_gamma = 1.0 / gamma

table = np.array([(i / 255.0) ** inv_gamma * 255 for i in np.arange(0, 256)]).astype("uint8")

return cv2.LUT(img, table)

2

3.4 Adaptive Non-Local Means Denoising

Sensor noise variance is estimated as �n = �I=255. OpenCV’s fast non-local means filter is applied
with strength

h = clip
�
b30�nc; 5; 20

�
:

def adaptive_denoise(img):

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

noise_level = np.std(gray) / 255.0 # Estimate noise level

denoise_strength = max(5, min(20, int(30 * noise_level))) # Adjust denoising strength

return cv2.fastNlMeansDenoisingColored(img, None, denoise_strength, denoise_strength, 7, 21)

3.5 Final Brighten&Denoise Pass

If the intermediate result is still dim (�I < 50), an additional gamma lift ? = 2:0 (�I < 30) else 1:5
is followed by a second denoising pass.

Step 4: Brighten and denoise

brightness = calculate_brightness(denoised)

if brightness < 50:

gamma = 2.0 if brightness < 30 else 1.5

enhanced_img = np.array(255 * (denoised / 255) ** (1 / gamma), dtype=np.uint8)

brightened_denoised = adaptive_denoise(enhanced_img)

3.6 Summary

Overall, the entire pipeline can be summarized as:

I�nal = Dh
�
G?� Dh� G� CCL(I)

�
:

3.7 Results

3

Figure 1: Pipeline output (dark image): Original, Adaptive CLAHE, Adaptive Gamma, Adap-
tive Denoising, Brightened & Denoised.

Figure 2: Pipeline output (extremely dark image): Original, Adaptive CLAHE, Adaptive Gamma,
Adaptive Denoising, Brightened & Denoised.

4 Alternate Classical Technique

4.1 Notation

Again, the RGB input will be I2 [0; 255]H�W�3. This algorithm takes two tunable input parame-
ters, the percentile and target brightness, p; t 2 [0; 1] � R.

4

4.2 Intuition

Assume that the brightness of each pixel for an image follows some distribution. The goal is to
develop a function that will remap the distribution of a dark image to the distribution of a standard
bright image. A naive assumption about these distributions may be that the pixel brightness of a
bright image follows a linear trend, meaning that 10% of the pixels have intensity of 10% or less,
50% of pixels have intensity of 50% or less and so on. For dark images, we assume that they follow
the same underlying distribution as a bright image but with a higher gamma value.

4.3 Algorithm

Inorm[i; j] = I[i;j]�min(I)
max(I) (4)

s = percentile(Inorm; p) (5)

Iadjusted[i; j] = Inorm[i; j]
log(t)
log(s) (6)

The adjustment algorithm was implemented in Python with numpy and Pillow.

def normalize_average(img, p, t):

img = img - np.min(img)

img = img / np.max(img)

sample = np.percentile(img, p*100)

exp = math.log(t) / math.log(sample)

img = np.pow(img, exp)

img = np.astype(img * 255, ’uint8’)

return Image.fromarray(img)

4.4 Results

This algorithm was very effective at brightening a significant portion of our dataset while preserving
detail. One flaw of the algorithm is that it adjusts brightness by exponentiation of the dark image’s
pixels. This causes areas of the image with one or more channels exactly equal to zero to receive
no adjustment. Because of this, pure black pixels will remain pure black, and pixels with only one
color channel present will turn pure red, green, or blue.

5

